Chapter Problems

Period and Frequency:

Classwork

- 1. An object is spun around in circular motion such that it completes 100 cycles in 25 s.
 - a. What is the period of its rotation?
 - b. What is the frequency of its rotation?
- 2. An object completes 2500 cycles in 25 s.
 - a. What is the period of its rotation?
 - b. What is the frequency of its rotation?
- 3. An object is spun around in circular motion such that its period is 12s.
 - a. What is the frequency of its rotation?
 - b. How much time will be required to complete 86 rotations?

Homework

- 4. An object completes 10 cycles in 50 s.
 - a. What is the period of its rotation?
 - b. What is the frequency of its rotation?
- 5. An object is spun around in circular motion such that its frequency is 12 Hz.
 - a. What is the period of its rotation?
 - b. How much time will be required to complete 86 rotations?
- 6. An object is spun around in circular motion such that its frequency is 500 Hz.
 - a. What is the period of its rotation?
 - b. How much time will be required to complete 7 rotations?

Velocity and Acceleration

Classwork

- 7. A 5.0 kg object is spun around in a circle of radius 1.0 m with a period of 4.0s.
 - a. What is the frequency of its rotation?
 - b. *What is its velocity?
 - c. *What is its acceleration?
- 8. A 15.0 kg mass is spun in a circle of radius 5.0 m with a frequency of 25 Hz.
 - a. What is the period of its rotation?
 - b. *What is its velocity?
 - c. *What is its acceleration?

- 9. A 0.5 kg object is spun around in a circle of radius 2.0 m with a period of 10.0s.
 - a. What is the frequency of its rotation?
 - b. *What is its velocity?
 - c. *What is its acceleration?

- 10. A 500 kg mass is spun in a circle of radius 25 m with a velocity of 250 m/s.
 - a. *What is the period of its rotation?
 - b. *What is its frequency?
 - c. What is its acceleration?

Dynamics of UCM

Classwork

- 11. What is the acceleration of an object that has a velocity of 25 m/s and is moving in a circle of radius 10m?
- 12. An object is experiencing an acceleration of 12 m/s² while traveling in a circle at a velocity of 3.1 m/s. What is the radius of its motion?
- 13. A 61 kg object is experiencing a net force of 25 N while traveling in a circle of radius 35 m. What is its velocity?
- 14. A 0.25 kg object is experiencing a net force of 15 N while traveling in a circle at a velocity of 21 m/s. What is the radius of its motion?
- 15. An object is experiencing a centripetal acceleration of 36 m/s² while traveling in a circle of radius 15 m. What is its velocity?
- 16. A 61 kg object is experiencing a net force of 250 N while traveling in a circle of radius 1.5 m. What is its velocity?

- 17. An object is experiencing an acceleration of 12 m/s² while traveling in a circle of radius 5.0 m. What is its velocity?
- 18. What is the net force acting on a 5.0 kg object that has a velocity of 15 m/s and is moving in a circle of radius 1.6m?
- 19. What is the acceleration of an object that has a velocity of 37 m/s and is moving in a circle of radius 45m?
- 20. An object is experiencing a centripetal acceleration of 2.0 m/s² while traveling in a circle at a velocity of 0.35 m/s. What is the radius of its motion?
- 21. What is the net force acting on a 52 kg object that has a velocity of 17 m/s and is moving in a circle of radius 1.6m?
- 22. A 6.8 kg object is experiencing a net force of 135 N while traveling in a circle at a velocity of 45 m/s. What is the radius of its motion?

General Problems

Class Work

- 23. A 0.65 kg ball is attached to the end of a string. It is swung in a vertical circle of radius 0.50 m. At the top of the circle its velocity is 2.8 m/s.
 - a. Draw a free body diagram for the ball when it is at the top of the circle. Next to that diagram indicate the direction of its acceleration.
 - b. Use that free body diagram to set up the equations needed to determine the Tension in the string.
 - c. Solve those equations for the Tension in the string.
- 24. A 0.65 kg ball is attached to the end of a string. It is swung in a vertical circle of radius 0.50 m. At the bottom of the circle its velocity is 2.8 m/s.
 - a. Draw a free body diagram for the ball when it is at the bottom of the circle. Next to that diagram indicate the direction of its acceleration.
 - b. Use that free body diagram to set up the equations needed to determine the Tension in the string.
 - c. Solve those equations for the Tension in the string.

- 25. A 0.25 kg ball is attached to the end of a string. It is swung in a vertical circle of radius 0.6 m. At the top of the circle its velocity is 3 m/s.
 - a. Draw a free body diagram for the ball when it is at the top of the circle. Next to that diagram indicate the direction of its acceleration.
 - b. Use that free body diagram to set up the equations needed to determine the Tension in the string.
 - c. Solve those equations for the Tension in the string.
- 26. A 0.25 kg ball is attached to the end of a string. It is swung in a vertical circle of radius 0.6 m. At the bottom of the circle its velocity is 3 m/s.
 - a. Draw a free body diagram for the ball when it is at the bottom of the circle. Next to that diagram indicate the direction of its acceleration.
 - b. Use that free body diagram to set up the equations needed to determine the Tension in the string.
 - c. Solve those equations for the Tension in the string.

Class Work

- 27. *A ball is attached to the end of a string. It is swung in a vertical circle of radius 1.5 m. What is the minimum velocity that the ball must have to make it around the circle?
- 28. *A ball is attached to the end of a string. It is swung in a vertical circle of radius 0.75 m. What is the minimum velocity that the ball must have to make it around the circle?
- 29. *A car is going over the top of a hill whose curvature approximates a circle of radius 200 m. At what velocity will the occupants of the car appear to weigh 20% less than their normal weight (or their normal weight times 0.8)?
- 30. *A car is going through a dip in the road whose curvature approximates a circle of radius 200 m. At what velocity will the occupants of the car appear to weigh 20% more than their normal weight (or their normal weight times 1.2)?
- 31. *The occupants of a car traveling at a speed of 30 m/s note that on a particular part of a road their apparent weight is 15% higher than their weight when driving on a flat road.
 - a. Is that part of the road a hill or a dip?
 - b. What is the vertical curvature of the road?

- 32. *A ball is attached to the end of a string. It is swung in a vertical circle of radius 0.33 m. What is the minimum velocity that the ball must have to make it around the circle?
- 33. *A ball is attached to the end of a string. It is swung in a vertical circle of radius 2.5 m. What is the minimum velocity that the ball must have to make it around the circle?
- 34. *A car is going over the top of a hill whose curvature approximates a circle of radius 350m. At what velocity will the occupants of the car appear to weigh 10% less than their normal weight?
- 35. *A car is going through a dip in the road whose curvature approximates a circle of radius 150m. At what velocity will the occupants of the car appear to weigh 15% more than their normal weight?
- 36. *The occupants of a car traveling at a speed of 40 m/s note that on a particular part of a road their apparent weight is 30% lower than their weight when driving on a flat road.
 - c. Is that part of the road a hill or a dip?
 - d. What is the vertical curvature of the road?

Class Work

- 37. **A car, traveling at a speed of 25 m/s, rounds a flat curve whose radius is 125 m.
 - a. Draw a side view free body diagram for the car. Indicate the direction of acceleration.
 - b. Use that free body diagram to set up the equations needed to determine the frictional force acting on the car.
 - c. Solve those equations for the coefficient of friction between the tires and the road.

- 38. **A car, traveling at a speed of 32 m/s, rounds a flat curve whose radius is 250 m.
 - a. Draw a side view free body diagram for the car. Indicate the direction of acceleration.
 - b. Use that free body diagram to set up the equations needed to determine the frictional force acting on the car.
 - c. Solve those equations for the coefficient of friction between the tires and the road.

Answers

1)		10)	General Problems
	a)0.25 s	a)0.63 s	23) a)F _T , mg, and a down
	b)4 Hz	b)1.59 Hz	b) F _T +mg=mv ² /r
		c)2,500 m/s ²	c) 3.83 N
2)			
	a)0.01 s	11) 62.5 m/s ²	24) a)F _⊤ up, mg down, a up
	b)100 Hz	12) 0.8 m	b) F _T -mg=mv ² /r
		12) 0.8 111	c) 16.57 N
3)		13) 3.8 m/s	
	a)0.083 Hz	44) 7.05	25) a)F _T , mg, and a down
	b)1032 s	14) 7.35 m	b) F _T +mg=mv ² /r
43		15) 23 m/s	c) 1.3 N
4)	- \ F -	40) 0.5	00) -\5
	a) 5s	16) 2.5 m/s	26) a) F_T up, mg down, a up
	b) 0.2Hz	17) 7.7 m/s	b) F _T -mg=mv ² /r c) 6.2 N
5)		40) =0= 11	C) 6.2 N
3)	a) 0.083s	18) 705 N	27) 3.83 m/s
	b) 7.2s	19) 30.4 m/s ²	27) 3.33 11/3
	0) 1.23		28) 2.71 m/s
6)		20) 0.06 m	20) 2.7 1 11/0
	a) 0.002s	21) 9393 N	29) 19.8 m/s
	b) 0.014s	,	
	,	22) 102 m	30) 19.8 m/s
7)			,
	a) 0.25Hz		31) a) dip
	b) 1.6m/s		b) 612 m
	c) 2.56 m/s ²		
			32) 1.80 m/s
8)			
	a) 0.04s		33) 4.95 m/s
	b) 785m/s		
	c) 123,245m/s ²		34) 18.52 m/s
9)	\0.4.11		35) 14.85 m/s
	a)0.1 Hz		20) -) bill
	b)1.257 m/s		36) a) hill
	c)0.79 m/s2		b) 544 m
			37) 0.51
			077 0.01
			38) 0.42
			33, 31.2